Research

Astronomy & Space Sciences

Title :

Lattice-Boltzmann methods

Area of research :

Astronomy & Space Sciences

Focus area :

Computational Fluid Dynamics

Contact info :

Details

Executive Summary :

In recent years, the Lattice Boltzmann (LB) method has been developed as an alternative method of Computational Fluid Dynamics (CFD). This method originates from kinetic theory and has several advantages in modeling fluid flows in complex geometries and multiphase flows. In addition, the explicit and local interaction makes it amenable for parallel realizations in large scale simulations. The utilization of lattice-Boltzmann has been focused on incompressible flow since the deviations of the many lattice-Boltzmann model are proportional to the square of Mach numbers. The effort to recover the Navier-Stokes equations of compressible flow has become successful for flows with medium Mach numbers near one using the Hermite polynomials as the expansion basis. In the early development the equilibrium distribution function is chosen to be a small-Mach number expansion containing a few coefficients. This approach has achieved great success for the continuity and momentum equations. The effort of recovering the energy equation has met some difficulties due to numerical instability. There are some models that aim to simulate Euler and Navier-Stokes equations and are recovered by the finite difference LB method.

Co-PI:

Shri M Gopalasamy, Vikram Sarabhai Space Centre (VSSC), Thiruvananthapuram

Organizations involved